Shannon Theory 2.0 A New Shannon Theory Based on Algebraic Geometry

Fan CHENG chengfan@sjtu.edu.cn Information and Computing Lab Department of Computer Science and Engineering Shanghai Jiao Tong University 24/09/2022

Abstract

According to the result of 2022 Fields Medalist June Huh, as well as the Gaussian Completely Monotone Conjecture, differential entropy of heat flow admits an inner structure and can be further decomposed by a Hodge structure in Algebraic Geometry. It will fundamentally change Shannon Theory ever since 1948.

- Background •
- Gaussian Completely Monotone Conjecture
- The Application and Verification of GCMC
- GCMC and Hodge Theory
- Discussion and Summary

Fundamental Tools Before 1990

 $H(X, Y) \ge I(X; Y)$ $H(X) \ge H(X | Y)$

 $e^{2h(X+Y)} \ge e^{2h(X)} + e^{2h(X)}$

Information Inequality Entropy Power inequality Fano's Inequality

Typicality

Covering Lemma

$$H(Y) \quad H(X \mid Y) \le 1 + P_{\rho} \log |\mathcal{X}|$$

$$\sum_{i=1}^{n} I(X_{i+1}^{n}; Y_{i} | Y^{i-1}, U)$$

= $\sum_{i=1}^{n} I(Y^{i-1}; X_{i} | X_{i+1}^{n}, U)$

Csiszar Sum Identity

Random Binning

 $C_{SI-E} = C(P)$

Dirty Paper Coding

Fundamental Problems 40-year Open Problems

Broadcast Channel

(Gaussian) Interference Channel

Joint Multi-source channel coding

A. El Gamal and Y.-H. Kim, Network Information Theory, Cambridge Univ. Press, 2011.

DMC-BC Network

Relay Channel

Multiple Description Coding

A New Mathematical Foundation

Gaussian Completely Monotone Conjecture

Gaussian Distribution Fundamental Building-Block of Science and Engineering

Information theory of Gaussian Distribution **Entropy power inequality (EPI)**

- (Shannon, 1948) For any two independent continuous random variables X and Y $e^{2h(X+Y)} >$
- The most important tool in Shannon Theory: uncertain principle, isoperimeter inequality
- Challenge: The channel capacity of Gaussian interference has not been settle down
- We have kept on studying EPI, but failed
 - Consensus: No new EPI and we need to find a way

"Gaussian noise is the worst additive noise"

$$\geq e^{2h(X)} + e^{2h(Y)}$$

Gaussian Channel Equivalent to Heat Equation

$$X \sim g(x)$$

$$X \sim g(x)$$

$$Y_t = X + Z_t$$

- - Y_t is referred to as the Gaussian mixed model (machine learning)
 - The p.d.f. of Y_t , f(y, t) is the solution to heat equation

$$\frac{\partial}{\partial t} f(y,t)$$

Differential entropy $h(Y_t)$ basic quantity

• For any random variable X, which was affected by Z_t , the information received Y_t is the sum of X and Z_t

$$=\frac{1}{2}\frac{\partial^2}{\partial x^2}f(y,t)$$

$$= -\int f(y, t) \log f(y, t) dy$$
 is a **y of information**

The derivatives of $h(Y_t)$ The meaning is not clear in information theory $h(Y_t) = \sum_i a_i t^i, \quad a_i \sim \frac{\partial^i}{\partial t^i} h(Y_t)$

•
$$\frac{\partial}{\partial t}h(Y_t) = \frac{1}{2}I(Y_t) \ge 0, I \text{ is the Fisher information}$$

$$\frac{\partial^2}{\partial t^2} h(Y_t) \le 0$$

•
$$\frac{\partial^i}{\partial t^i} h(Y_t), i \ge 3$$
 unknown

• My breakthrough (2013–2015)

• $\frac{\partial^3}{\partial t^3} h(Y_t) \ge 0$ $\frac{\partial^4}{\partial t^4} h(Y_t) \le 0$

Gaussian Completely Monotone Conjecture The signed expression of the 3rd and 4th derivatives

Theorem 1: For t > 0,

$$\frac{\partial^3}{\partial t^3}h(Y_t) = \frac{1}{2}\int f\left(\frac{f_3}{f} - \frac{f_1f_2}{f^2} + \frac{1}{3}\frac{f_1^3}{f^3}\right)^2 + \frac{f_1^6}{45f^5}dy.$$

Theorem 2: For t > 0, $\frac{\partial^4}{\partial t^4}h(Y_t)$ $= -\frac{1}{2} \int f\left(\frac{f_4}{f} - \frac{6}{5}\frac{f_1f_3}{f^2} - \frac{7}{10}\frac{f_2^2}{f^2} + \frac{8}{5}\frac{f_1^2f_2}{f^3} - \frac{1}{2}\frac{f_1^4}{f^4}\right)^{-1}$ $+f\left(\frac{2}{5}\frac{f_1f_3}{f^2}-\frac{1}{3}\frac{f_1^2f_2}{f^3}+\frac{9}{100}\frac{f_1^4}{f^4}\right)^2$ $+f\left(-\frac{4}{100}\frac{f_1^2f_2}{f^3}+\frac{4}{100}\frac{f_1^4}{f^4}\right)^2$ $+\frac{1}{300}\frac{f_2^4}{f^3}+\frac{56}{90000}\frac{f_1^4f_2^2}{f^5}+\frac{13}{70000}\frac{f_1^8}{f^7}\mathrm{d}y.$

Gaussian Completely Monotone Conjecture Related publications 2013–2022

- F. Cheng, "Generalization of Mrs. Gerber's Lemma," Communications in Information and Systems, vol. 14, no. 2, pp. 79-86, 2014 (work finished in 2011-2012, published in 2014)
- F. Cheng, "Some conjecture on Entropy Power inequality," 2013 Workshop on Coding and Information Theory, HKU, Dec. 2013
- F. Cheng and Y. Geng, "Convexity of Fisher Information with Respect to Gaussian Perturbation," 2014 Iran Workshop on Communication and Information Theory, (IWCIT 2014)
- F. Cheng and Y. Geng, "Higher Order Derivatives in Costa's Entropy Power Inequality," IEEE Transactions on Information Theory, vol. 61, no. 11, pp. 5892-5905, Nov. 2015
- F. Cheng, "How to Solve Gaussian Interference Channel," The 2019 Workshop on Probability and Information Theory (WPI 2019), HKU, Aug. 2019
- F. Cheng, "A Reformulation of Gaussian Completely Monotone Conjecture: A Hodge Structure on the Fisher Information along Heat Flow," <u>https://arxiv.org/abs/2208.13108</u>

Gaussian Completely Monotone Conjecture 2013 - 2015

- (Conjecture 1) For any random varia
 - When *i* is even, it is negative
 - When *i* is odd, it is positive
- (Conjecture 2) $I(Y_t)$ is log-convex in t

Summary: The signs of derivatives of $\frac{\partial^i}{\partial t^i}h(Y_t)$ is +, -, +, -, ?, ?, ?, ? Conjecture: Signs alternate in + and -

able X, the sign of
$$\frac{\partial^i}{\partial t^i}h(Y_t)$$

Breakthrough since 1966 Problems in C. Villani's Textbook: McKean 1966, CM functions

C. Villani 2010 Fields

A review of mathematical topics in collisional kinetic theory

Cédric Villani

completed: October 4, 2001 revised for publication: May 9, 2002 most recent corrections: June 7, 2006

Cedric Villani <villani@ihp.fr> to me 👻

Dear Fan,

Thank you for your message. Sorry for not replying earlier. I am not aware of a result like this. I suggest that you check with Amir Dembo or the Cover-Thomas duo. Good luck! Best, Cedric

There is a history of conjectures of "complete monotonicity" of functionals in the context of the Boltzmann equation, which has turned to be quite wrong. You can see some references in my online review on the Boltzmann equation, see the chapter about "Maxwellian collisions" and the "McKean conjecture", which turned out to be false. See also p.166 of my review (I attach a version). In view of that story, I think Conjecture 1 is too daring; just having n=1 and n=2 is not convincing enough to give a hint of it. (Please check whether it is not explicitly the 2nd McKean conjecture; it has been a long time and I don't remember details well.)

Best, Cedric

H. P. McKean NYU

Completely Monotone Hausdorff—Bernstein—Widder 1920s

- Example: The signs of the derivatives of 1/t are -, +, -, +,
- in signs

2.

F. Hausdorff S. N. Bernstein D. Widder

• A function f(t) is called completely monotone (CM) if its derivatives alternate

It is trivial to conduct derivatives but it is not easy to show the signs

Gaussian Completely Monotone Conjecture (GCMC) The Fisher information $I(Y_{t})$ is CM $I(Y_t)$ is log-convex

Two facts on CM functions H.B.W. 1920

- 1. f(t) is CM, then f(t) is log-convex
- Gaussian Completely Monotone Conjecture
 - 1. Fisher information $I(Y_t)$ is CM

 $2.I(Y_t)$ is log-convex

Conjecture 1 implied Conjecture 2

2.Laplace Representation of CM functions

• f(t) is CM, iff there exists a nondecreasing Borel measure $\mu(x)$ on $[0, +\infty)$ such that

$$f(t) = \int_{x} e^{-xt} d\mu(x)$$

New Expression for Information

The Application and Verification of GCMC

GCMC looks great, but what's its applications?

The mathematical meaning of CM functions Information is decomposable and reversable **HKU2019**:

- The decomposition of Fisher information
 - e^{-xt} is for CM
 - $\mu(x)$ is the identity of X, regardless of t
- Laplace transformation is reversible
 - By $Y_t = X + Z_t$, though Z_t has disturbed X, $\mu(x)$ remained unchanged
 - reversible

• Recall that, in the second law of thermodynamics, the status of the system is not

The information meaning of CM functions It is up to its mathematical meaning

- X is transformed into Y by the channel
- The relation between X and Y is determined by p(Y|X)
- So far, no theory to govern X and Y
 - The problem is intractable if we add even one more node in the point to point case
- The technical reason why network information theory is always hard

 $Y \sim f(y)$ p(Y|X)

 $I(Y_t) = e^{-xt} d\mu(x)$ gives a constraint on the Gaussian node: reversible and decomposable **Potential Application: Gaussian** interference channel

An Application in Gaussian Multiuser Channel 2019-2021

Log-convexity of Fisher information along heat flow

Michel Ledoux

Institut de Mathématiques de Toulouse University of Toulouse – Paul-Sabatier Toulouse, France Email: ledoux@math.univ-toulouse.fr

Michel Ledoux

Chandra Nair

Yan Nan Wang

Chandra Nair and Yan Nan Wang Dept. of Information Engg. The Chinese University of Hong Kong Sha Tin, N.T., Hong Kong Email: {chandra,dustin}@ie.cuhk.edu.hk

- This paper establishes the log-convexity of Fisher information for scalar random variables along the heat flow, thus resolving a conjecture posed in [1]
- Such results may also be useful in showing the uniqueness of local maximizers in such settings as is observed in settings such as the MIMO Gaussian broadcast channels

Verification $I(Y_t)$ is log-convex

- Ledoux proved that $I(Y_t)$ is log-convex
- Gaussian Completely Monotone Conjecture (GCMC)
 - 1. The Fisher information $I(Y_t)$ is CM
 - $2.I(Y_t)$ is log-convex
 - C1 implies C2
- The proof of C2 provides a necessary condition of C1

Imagine: C2 is merely a point of C1!!! C2: A big surprise later

GCMC and Hodge Theory

2022 International Congress of Mathematicians 2022.07.06 - 2022.07.14

June Huh (许埈珥) 2022 Fields Medal

- Four Color Theorem (machine proof)
- Chromatic polynomial
- *C*: the number of colorings with *n* colors $C = n^5 10n^4 + 35n^3 50n^2 + 24n$
- The coefficients $\{a_i\}$ of C above satisfies that $a_i^2 \ge a_{i-1}a_{i+1}$
- If $\{a_i\}$ satisfies that $a_i^2 \ge a_{i-1}a_{i+1}$, then it is a log-concave sequence

Conjecture: The coefficients of C form a log-concave sequence for any C

https://www.quantamagazine.org/ june-huh-high-school-dropoutwins-the-fields-medal-20220705/

Constructive proof of log-concave sequence Solved several long-standing open problems of log-concave sequence

- June Huh used Hodge theory to study combinatorics
 - Construct Complex algebraic variety, study its homology and cohomology
- Open problem 1: chromatic polynomial
- Open problem 2: matroid
- Open problem 3: geometry lattice

"bringing the ideas of Hodge theory to combinatorics, the proof of the Dowling–Wilson conjecture for geometric lattices, the proof of the Heron–Rota–Welsh conjecture for matroids, the development of the theory of Lorentzian polynomials, and the proof of the strong Mason conjecture"—Fields Medal Citations

Hodge Theory **Central to contemporary math**

the Clay Mathematics Institute.

Hodge conjecture: It is one of the seven Millennium Prize Problems set up by

CM Functions and Hodge Theory Linked with Algebraic Geometry

• Hausdorff et. al. showed that, if f(t) is CM, then f(t) is log-convex

•
$$(\log f(t))'' \ge 0 \rightarrow \frac{f''f - (f')^2}{f^2} \ge f', f', f'' \text{ is a log-co}$$

- A new characterization of CM functions: if f(t) is CM, then $f, f^{(1)}, f^{(2)}, \ldots, f^{(n)}, \ldots$ is a log-convex sequence.
- If $\{a_i\}$ is a log-convex sequence, then $\{1/a_i\}$ is a log-concave sequence

- $0 \to f'' f \ge (f')^2$
- nvex sequence

Idea: June Huh's method -> CM functions

• My intuition: why it works

June Huh's summary It is a general method for log-concave sequence

I believe that behind any log-concave sequence that appears in nature, there is such a "Hodge structure" responsible for the log-concavity.

- "Tropical geometry of matroid," June Huh
- "Hodge Theory of Matroids," Karim Adiprasito, June Huh, and Eric Katz

June Huh

The derivatives of $h(Y_{f})$ **Meaning of information theory**

- Gaussian Completely Monotone Conjecture (GCMC)
 - 1. The Fisher information $I(Y_{\tau})$ is CM
 - $2.I(Y_{t})$ is log-convex

•
$$\{\frac{\partial^i}{\partial t^i}h(Y_t), i = 1, 2, ...\}$$
 is supported

 $h(Y_t) = \sum a_i t^i, \quad a_i \sim \frac{\partial^i}{\partial t^i} h(Y_t)$

Entropy (bit) can be further decomposed and it has an inner structure (e.g., atoms and quarks)

d by a Hodge structure

- Hodge theory is merely a branch of the grand algebraic geometry family
- GCMC is one of the hard problems in information theory

- A new mathematical foundation of Shannon Theory
- Some fundamental open problems may be solved

Reshape information theory via algebraic geometry

Discussion and Summary

How hard is information theory Very close to some hard problems in AG

Broadcast Channel

(Gaussian) Interference Channel

Joint Multi-source channel coding

DMC-BC Network

We have done our best :)

Relay Channel

Multiple Description Coding

Reshape information theory via algebraic geometry (IT2.0) has already on its way

Will be some fundamental change in 3 years

C. E. Shannon

T. Cover

F. Hausdorff

A. El Gamal

M. H. Costa

R. W. Yeung

All the past is a prelude The spirit of fundamental research

C. Villani

J. Huh

Thanks

A Reformulation of Gaussian Completely Monotone Conjecture: A Hodge Structure on the Fisher Information along Heat Flow <u>https://arxiv.org/abs/2208.13108</u> https://ichengfan.github.io/IT/